

Essential	Conditionally essential	Non-essential
<u>Histidine</u> (H)	<u>Arginine</u> (R)	<u>Alanine</u> (A)
<u>Isoleucine</u> (I)	<u>Cysteine</u> (C)	<u>Aspartic acid</u> (D)
Leucine (L)	<u>Glutamine</u> (Q)	<u>Asparagine</u> (N)
Lysine (K)	<u>Glycine</u> (G)	<u>Glutamic acid</u> (E)
<u>Methionine</u> (M)	Proline (P)	<u>Serine</u> (S)
<u>Phenylalanine</u> (F)	<u>Tyrosine</u> (Y)	<u>Selenocysteine</u> (U)
<u>Threonine</u> (T)		<u>Pyrrolysine</u> * (O)
<u>Tryptophan</u> (W)		
<u>Valine</u> (V)		

Non EA	A	EAA	Nev	v AA
Name	Three letter code	One letter code	Molecular Weight	Molecular Formula
Alanine	Ala	А	89.1	C3H7NO2
Arginine	Arg	R	174.2	C6H14N4O2
Asparagine	Asn	Ν	132.12	C4H8N2O3
Aspartic acid	Asp	D	133.11	C4H7NO4
Cysteine	Cys	С	121.16	C3H7NO2S
Glutamic acid	Glu	E	147.13	C5H9NO4
Glutamine	Gln	Q	146.15	C5H10N2O3
Glycine	Gly	G	75.07	C2H5NO2
Histidine	His	Н	155.16	C6H9N3O2
Hydroxyproline	Нур	0	131.13	C5H9NO3
Isoleucine	Ile	Ι	131.18	C6H13NO2
Leucine	Leu	L	131.18	C6H13NO2
Lysine	Lys	K	146.19	C6H14N2O2
Methionine	Met	М	149.21	C5H11NO2S
Phenylalanine	Phe	F	165.19	C9H11NO2
Proline	Pro	Р	115.13	C5H9NO2
Pyroglutamatic	Glp	U	139.11	C5H7NO3
Serine	Ser	S	105.09	C ₃ H ₇ NO ₃
Threonine	Thr	Т	119.12	C4H9NO3
Tryptophan	Trp	W	204.23	C11H12N2O2
Tyrosine	Tyr	Y	181.19	C9H11NO3
Valine	Val	V	117.15	C5H11NO2

4)Classification based on metabolic fate

The carbon skeleton of amino acids can be used either for glucose production or for the production of ketone bodies, Based on that

- Both glucogenic and ketogenic amino acids: Isoleucine, Tyrosine, Phenylalanine and Tryptophan
- 2) Purely Ketogenic amino acids: Leucine and Lysine
 - 3) Purely Glucogenic amino acids:

The remaining 14 amino acids are glucogenic. Alanine, valine ,serine, threonine, glycine, methionine, asparagine, glutamine, cysteine, cystine, aspartic acid, glutamic acid, histidine and arginine.

4)Classification based on metabolic fate (Con.)

Glucogenic amino acids	Glucogenic and ketogenic	Ketogenic amino acids	
Alanine, Arginine, Asparagine, Aspartate Asparagine, Cysteine,	Tyrosine Isoleucine Phenylalanine	Leucine Lysine	
Methionine Glutamate, Glutamine,	Tryptophan		
Proline, Serine, Threonine,Valine	These amino acids breakdown	These amino acids breakdown to form ketone	

These amino acids serve as precursors gluconeogenesis for glucose formation.

ιο ιστηι precursors for both ketone bodies and glucose.

٦ bodies.

Metabolic breakdown of individual amino acids Catabolism of amino acids gives rise to the intermediate compounds of citric acid cycle. Alanine, serine, cysteine and asparagine are converted to oxaloacetate. Glutamine, proline, arginine and histidine are converted to α ketoglutarate through glutamate. Succinyl CoA is a point of entry for non polar amino acids like methionine, valine and isoleucine. Leucine is degraded to acetyl CoA and acetoacetate. Tryptophan, lysine, leucine, phenylalanine, tyrosine and isoleucine donate their carbons to acetyl CoA.

Amino acid biosynthesis Nonessential amino acids are formed from intermediates of carbohydrate metabolism. Alanine is formed from pyruvate and aspartate from oxaloacetate. Asparagine is formed from aspartate. Glutamate is formed from α ketoglutarate and glutamine from glutamate. Glutamate is the precursor of proline and arginine. Cysteine is synthesized from 3 – phosphoglycerate. During the process, serine is the intermediate compound which gives rise to glycine.

STRUCTURE OF AMINO ACIDS

In protein molecules the amino acid residues are covalently linked to form very long chains. They are united in a head-to-tail arrangement through substituted amide linkages called <u>Peptide bond</u> that arise by elimination of the elements of water from the carboxyl group of one amino acid and α-amino group of the next.

Three amino acids can be joined by two peptide bonds to form a tripeptide; similarly, amino acids can be linked to form tetrapeptides ,pentapeptides, and so forth.

STRUCTURE OF AMINO ACIDS

- When a few amino acids are joined in this fashion, the structure is called an oligopeptide.
- When many amino acids are joined, the product is called a polypeptide.

STRUCTURE OF AMINO ACIDS

➢In a peptide, the amino acid residue at the end with a free -amino group is the amino-terminal (or N-terminal) residue; the residue at the other end, which has a free carboxyl group, is the carboxylterminal (C-terminal) residue.

